

E NSF Engineering Research Visioning Alliance

Engineering Research Opportunities for Tomorrow's Unhackable Infrastructure

GUIRR Webinar | March 22, 2023

Presented by Saurabh Amin, Associate Professor and Pierce Lab Director, MIT and David Ott, Senior Researcher and Program Director, VMware

info@ERVAcommunity.org

© Copyright 2023 ERVA

•	•	•	•	0	•	•	0	•		•	0	•	0	•	•	•	•	•		•	•	•	•	•	•			•
0	•	•	0	0	0	•	0	•	•	•	•	•	•	•	•	•	•	0	0	•	•	•	0	•	•		•	•
•		•	0	•	0	•	0	•	•	0	•	•	•	•	•	•	•	0	0	•	•	•	•	•	•			
0	•		•			0	0	•	0	•		•		•		•		•	0	•		•	•	•	•	0		•
0			•		•	0	•	•	0	•	0	•	0	•		•	•	0	0	•		•		•	•	0	0	•

ERVA BACKGROUND

- Launched in April 2021
- 5-year cooperative agreement funded by NSF
- Awarding Organizations BTAA, EPSCoR/IDeA Foundation, UIDP

MISSION

To identify and develop bold and transformative new engineering research directions and to catalyze the engineering community's pursuit of innovative, high-impact research that benefits society.

NSF Engineering Research

Visioning Alliance

- Facilitate generation of engineering research visions
- Articulate high-impact future research visions
- Enable new opportunities
- Communicate research visions and nascent opportunities
- Synthesize ideas
- Cultivate relationships
- Engage new, diverse voices

PI TEAM

Dorota Grejner-Brzezinska The Ohio State University Principal Investigator

erVa

Charles Johnson-Bey Booz Allen Hamilton Co-Principal Investigator

Edl Schamiloglu University of New Mexico Co-Principal Investigator

Anthony Boccanfuso UIDP Co-Principal Investigator

Pramod Khargonekar UC Irvine Co-Principal Investigator

BROAD BASE OF INDIVIDUAL SUPPORTERS

STANDING VOLUNTEER LEADERSHIP

NSF Engineering Research Visioning Alliance

VISIONING

Goal: identify specific areas that are nascent or require additional exploration with the potential for the greatest return on investment.

Attendees: cross-sector researchers who can help ERVA identify less-explored, basic, and use-inspired lines of research ripe for engineering community pursuit.

Format: expert, informed discussion and interactive thematic breakout sessions.

VISIONING REPORTS

Released: August 17, 2022

Release: October 27, 2022

Release: February 16, 2023

SETTING THE STAGE

Thematic Task Force: 8 leading voices in engineering, cybersecurity, computing fields.

• Frame the event—select 5 subtopics and the questions that will drive the discussion toward goal

Participants: 35 selected, based on their research and expertise (engineering and other disciplines). From academia, industry, and government.

Charge: Identify specific areas that require exploration \rightarrow greatest ROI potential.

EXCELLENCE AND DIVERSITY

Visioning event: Engineering R&D Solutions for Unhackable Infrastructure, MIT, August 2022

THEME: Engineering R&D Solutions for Unhackable Infrastructure

Key question: What could tomorrow's "unhackable infrastructure" look like with non-incremental advances in engineering R&D?

"Infrastructure"

- Physical infrastructure (assets, hardware)
- Software and algorithms
- Data and communication networks
- Human beings: users, operators, security administrators, adversaries

"Unhackable"

- Safety, security, and trust in all essential systems and services
- Robust, resilient, adaptive in the face of unexpected change
- Trustworthiness in a wide range of situations including adversarial

Societal-Scale CPHS Domain: Transportation

Multiple Stakeholders and Decentralized Control (cities, transportation authorities)

Physical infrastructure: road capacity, intersections, stations, parking lots, and cyber-physical networks

Services: Logistics, Emergency Operations, EV charging, Mixed-autonomy

Congestion: localized,	Inefficie	nt resource	Infrastructure
cascading, instabilities	allocat	ion or use	deterioration
Safety and incid	ent risks	Unfair prici	ing Unequal access

Backdoor attacks and platform compromise

Non-robust AI/ML algorithms (potential unintended consequences)

Data integrity compromise and denial of service

Malicious entities and/or strategic (selfish) behavior

Network interdependencies, involving both legacy and modern infrastructure

resulting impacts

NSF Engineering Research Visioning Alliance

Engineering-Informed Infrastructure Cybersecurity

Key question: How can we leverage deep engineering knowledge and expertise to lead security and resilience research in cyber-physical-human infrastructure systems?

Analogy: Physics-Constrained ML

ML: good at recognizing patterns, anomaly detection, prediction

Physics/Engineering:

- Leverage traditional modeling
- Specialized domain knowledge/representations
- Informed design constraints

Engineering Domains:

- Specialized design specifications, requirements, constraints
- Safety, security, resilience definitions tailored to context and stakeholders
- Nature of the infrastructure (medical vs. energy vs. transportation vs. critical vs other)

Engineering R&D Solutions for Unhackable Infrastructure

Human-Technology Interface Considerations

Measuring and Verifying Security (Metrics)

Future Approaches to Autonomous Security

#3

New Approaches to Resilience in Interdependent Infrastructures

Architecting Trustworthy Systems

ISF Engineering Research (isioning Alliance

Human-Technology Interface Considerations

Sampling of engineering research opportunities:

- Extensive work needed on human incentives and the economics of security and resilience for engineered infrastructures.
- Security usability research in engineered infrastructures is needed to address unwanted tradeoffs with functionality, convenience, cost, and more.
- Integrating **frontier user interface technologies** (e.g., AR/VR, NLP, biometric monitoring) into security interfaces.
- Use of **immersive human-computer environments** in CPHS needs threat modeling, vulnerability mitigation, and more.

SF Engineering Research isioning Alliance

#1

Measuring and Verifying Security (Metrics)

- Challenges in **measuring, evaluating,** and **verifying security** in complex, scaled CPHS are considerable.
- **Continuous monitoring** and **automated response** research at CPHS interfaces given changing threat landscapes and unpredictability.
- **Observability** is a key design issue. Foundational research and practical tools are needed to observe, estimate, and update the dynamic security state of a CPHS.
- Fully automated mechanisms are needed to maintain functionality (resilience) while recovering to an operational state (recovery).
- Incorporating **specification and verification techniques** into design cycles for large-scale infrastructure systems.

#2

Future Approaches to Autonomous Security

- Autonomous security is needed address the scale and complexity of tomorrow's CPHS infrastructures and adversarial threats.
- Research should include how **intelligent automation** and **human intelligence** interact.
- The future of AI-driven security research in CPHS infrastructure context is to add **automated decisions and response**.
- A key challenge in future autonomous security is the need for more sophisticated **contextual awareness**.
- Some key applications: virtual security assistants, automated configuration agents, real-time security risk analyzers, adversarial agents for design analysis.

#7

#4 New Approaches to Resilience in Interdependent Infrastructures

- A key design challenge is managing insecurities arising from **correlated software bugs** and **hardware malfunctions**.
- Research is needed on the complex interplay between coordinating entities in CPHS infrastructures.
- Develop a design approach that maintains system-level properties of safety and security after integration of modular components.
- **Compositional and learning-based approaches** to quantify systemlevel safety properties based on data-driven models of CPHS.
- Tomorrow's systems will be deployed in contested environments that require far more **active cyber defense strategies and tactics**.

New Approaches to Resilience in Interdependent Infrastructures NSF Engineering Research

- Transforming ill-defined notions of trustworthiness into welldefined, robust notions of **provable correctness and security**.
- Expanding the role of design specification for a more verifiable CPHS.
- Research on security and reliability in both centralized and decentralized infrastructure contexts.
- Scaling **confidential computing techniques** (attestation, isolation) to complex component hierarchies and cross-domain interactions.
- Trustworthy architectures for many new infrastructure domains.
- Applying **quantum-resistant cryptography** to future CPHS infrastructure.

ERVA: Call to Action

Share

• **Share** ERVA reports broadly to anyone interested in the future of engineering.

ervacommunity.org/ visioning reports

Align & Pursue

- Align report priorities and insights with your research goals.
- **Pursue** aligned research directions.

 Engage in ERVA ideation and visioning events.

Engage

- July 25-26: *Engineering* sustainable materials for a circular economy
- --Nominate attendees

Got Ideas?

Submit your visioning theme ideas!

Please share!

JOIN US!

•		•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	•	0	•	•	•		•		•	•	•
•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•
•		•		•	•		•		•		•		•		•	•	•
•		•	0	•	•	0	•	0	•	•	•	0	•	0	•	•	•
•		•		•	•		•		•				•	•	•		
•	•	•	•	•	•	0	•		•	•	•		•	•	•	•	•
•		•		•			•						•		•		•
•	•	•	•	•	•		•	0	•	0	0	0	•		•	•	•
•				•			•						•		•		

This material is based upon work supported by the National Science Foundation under Grant #2048419. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

> **N**SF Engineering Research Visioning Alliance

Become an ERVA Champion at www.ervacommunity.org/get-involved

• Follow us:

ERVAcommunity.org @ERVAcommunity #ERVAcommunity info@ervacommunity.org

f in 🎔

erva NSF Engineering Research Visioning Alliance